This paper studies covariate adjusted estimation of the average treatment effect (ATE) in stratified experiments. We work in the stratified randomization framework of Cytrynbaum (2021), which includes matched tuples designs (e.g. matched pairs), coarse stratification, and complete randomization as special cases. Interestingly, we show that the Lin (2013) interacted regression is generically asymptotically inefficient, with efficiency only in the edge case of complete randomization. Motivated by this finding, we derive the optimal linear covariate adjustment for a given stratified design, constructing several new estimators that achieve the minimal variance. Conceptually, we show that optimal linear adjustment of a stratified design is equivalent in large samples to doubly-robust semiparametric adjustment of an independent design. We also develop novel asymptotically exact inference for the ATE over a general family of adjusted estimators, showing in simulations that the usual Eicker-Huber-White confidence intervals can significantly overcover. Our inference methods produce shorter confidence intervals by fully accounting for the precision gains from both covariate adjustment and stratified randomization. Simulation experiments and an empirical application to the Oregon Health Insurance Experiment data (Finkelstein et al. (2012)) demonstrate the value of our proposed methods.
翻译:本文研究对分层实验中平均治疗效果(ATE)的调整后估计值进行了调整。 我们在Cytrynbaum(2021年)的分层随机化框架(Cytrynbaum,2021年)中工作,该框架包括相匹配的图普设计(如对对对对配)、粗沙分分分和完全随机化作为特例。有趣的是,我们发现,Lin(2013)相互作用的回归一般都是无效果的,只有完全随机化的边缘情况才具有效率。根据这一发现,我们为某个特定的分层设计制定了最佳线性共变换调整,建造了几个实现最小差异的新估测器。概念上,我们表明,在大型样本中,对一个分层设计进行最佳的线性调整相当于对独立设计进行双倍紫色半对称调整。我们还开发了新颖的、无症状精确的推论,对一个经过调整的子系进行了模拟,显示通常的Eicker-Huber-Whe信任度间隔能够大大覆盖。我们的推论方法通过全面计算,从而模拟地模拟地模拟和实验性地展示了我们的精确度数据,从而模拟地分析,从而模拟地展示了我们的精确度。