Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Posterior inference with generative models is an alternative to methods such as Markov Chain Monte Carlo, both for likelihood-based and simulation-based inference. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `distance to random point' (DRP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is optimal. We demonstrate the method on a variety of synthetic examples, and show that DRP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect non-optimal inferences in cases where existing methods fail.
翻译:参数推论,即推断某一统计模型参数的后方分布,是许多科学学科的一个中心问题。与基因模型相比,与Markov 链子蒙特卡洛等方法的外部推论,是概率推论和模拟推论的替代方法。然而,评估在基因模型中编码的后方弧星的准确性并非直截了当。在本文中,我们采用`距离到随机点'(DRP)的覆盖范围测试,作为估计遗传后方估测器的覆盖概率的方法。我们的方法不同于以前存在的需要后方评估的基于覆盖的方法。我们证明,我们的方法是必要的,足以表明后方估计器是最佳的。我们用多种合成例子来演示了这种方法,并表明DRP可以用来测试高空间的后方推力分析结果。我们还表明,我们的方法可以检测现有方法失败时的非最佳推论。