Tractably modelling distributions over manifolds has long been an important goal in the natural sciences. Recent work has focused on developing general machine learning models to learn such distributions. However, for many applications these distributions must respect manifold symmetries -- a trait which most previous models disregard. In this paper, we lay the theoretical foundations for learning symmetry-invariant distributions on arbitrary manifolds via equivariant manifold flows. We demonstrate the utility of our approach by using it to learn gauge invariant densities over $SU(n)$ in the context of quantum field theory.
翻译:长期以来,在自然科学中,一个重要的目标一直是对多个元件的建模分布进行透明的建模,最近的工作重点是开发通用机器学习模型,以学习这些分布。然而,对于许多应用,这些分布必须尊重多重对称性,这是大多数以往模型所忽略的一个特点。在本文中,我们为通过等式多元流来学习任意的元件的对称性分布打下了理论基础。我们通过利用它来学习量子场理论中大于$SU(n)值的度量密度,证明了我们的方法的效用。