We establish estimations for the parameters of the output distribution for the softmax activation function using the probit function. As an application, we develop a new efficient Bayesian learning algorithm for fully connected neural networks, where training and predictions are performed within the Bayesian inference framework in closed-form. This approach allows sequential learning and requires no computationally expensive gradient calculation and Monte Carlo sampling. Our work generalizes the Bayesian algorithm for a single perceptron for binary classification in \cite{H} to multi-layer perceptrons for multi-class classification.
翻译:我们使用 probit 函数为软max 激活功能的输出分布参数设定了估计值。 作为应用程序, 我们为完全连接的神经网络开发一种新的高效的Bayesian 学习算法, 该算法的培训和预测是在Bayesian 推断框架内以封闭形式进行的。 这种方法允许连续学习, 不需要计算昂贵的梯度计算和 Monte Carlo 取样。 我们的工作将用于\ cite{ H} 中二进制分类的单端距的Bayesian 算法一般化为多级分类的多层导线。