Safe deployment of deep neural networks in high-stake real-world applications requires theoretically sound uncertainty quantification. Conformal prediction (CP) is a principled framework for uncertainty quantification of deep models in the form of prediction set for classification tasks with a user-specified coverage (i.e., true class label is contained with high probability). This paper proposes a novel algorithm referred to as Neighborhood Conformal Prediction (NCP) to improve the efficiency of uncertainty quantification from CP for deep classifiers (i.e., reduce prediction set size). The key idea behind NCP is to use the learned representation of the neural network to identify k nearest-neighbors calibration examples for a given testing input and assign them importance weights proportional to their distance to create adaptive prediction sets. We theoretically show that if the learned data representation of the neural network satisfies some mild conditions, NCP will produce smaller prediction sets than traditional CP algorithms. Our comprehensive experiments on CIFAR-10, CIFAR-100, and ImageNet datasets using diverse deep neural networks strongly demonstrate that NCP leads to significant reduction in prediction set size over prior CP methods.
翻译:安全地部署深度神经网络在高风险的现实应用中需要理论上可靠的不确定性量化。符合预测(CP)是一种基于原则的框架,用于分类任务的深层模型的不确定性量化,其中预测集具有用户指定的覆盖率(即真实类标签具有高概率被包含在内)。本文提出了一种称为邻域符合预测(NCP)的新算法,以改进从 CP 进行深度分类器的不确定性量化的效率(即减少预测集大小)。NCP 的核心思想是使用神经网络的学习表征来识别给定测试输入的 k 个最近邻的校准示例,并分配它们的重要性权重,以其距离成比例来创建自适应预测集。我们在理论上显示,如果神经网络的学习数据表征满足一些温和的条件,那么 NCP 将产生比传统 CP 算法更小的预测集。我们对 CIFAR-10、CIFAR-100 和 ImageNet 数据集使用多样的深度神经网络进行广泛的实验,强烈证明 NCP 相对于以前的 CP 方法会显着减少预测集的大小。