We discuss Bayesian nonparametric procedures for the regression analysis of compositional responses, that is, data supported on a multivariate simplex. The procedures are based on a modified class of multivariate Bernstein polynomials and on the use of dependent stick-breaking processes. A general model and two simplified versions of the general model are discussed. Appealing theoretical properties such as continuity, association structure, support, and consistency of the posterior distribution are established. Additionally, we exploit the use of spike-and-slab priors for choosing the version of the model that best adapts to the complexity of the underlying true data-generating distribution. The performance of the proposed model is illustrated in a simulation study and in an application to solid waste data from Colombia.
翻译:我们讨论了对组成反应进行回归分析的巴耶斯非参数性程序,即以多变简单x支持的数据。这些程序基于一个经过修改的多变伯恩斯坦多面体分类和使用依赖性刺破程序。讨论了通用模型的一般模型和两个简化版本的一般模型。建立了理论属性,如连续性、联系结构、支持和后方分布的一致性。此外,我们利用钉和板前缀来选择模型的版本,该版本最能适应基本真实数据生成分布的复杂性。在模拟研究中以及在对哥伦比亚固体废物数据的应用中说明了拟议模型的性能。