Extreme-value copulas arise as the limiting dependence structure of component-wise maxima. Defined in terms of a functional parameter, they are one of the most widespread copula families due to their flexibility and ability to capture asymmetry. Despite this, meeting the complex analytical properties of this parameter in an unconstrained setting remains a challenge, restricting most uses to models with very few parameters or nonparametric models. In this paper, we focus on the bivariate case and propose a novel approach for estimating this functional parameter in a semiparametric manner. Our procedure relies on a series of transformations, including Williamson's transform and starting from a zero-integral spline. Spline coordinates are fit through maximum likelihood estimation, leveraging gradient optimization, without imposing further constraints. Our method produces efficient and wholly compliant solutions. We successfully conducted several experiments on both simulated and real-world data. Specifically, we test our method on scarce data gathered by the gravitational wave detection LIGO and Virgo collaborations.
翻译:极值相生物作为组件最大值的极限依赖性结构产生。 从功能参数的角度界定,它们是最广泛的相生物家庭之一,因为它们具有灵活性和捕捉不对称的能力。尽管如此,在不受限制的环境中满足这一参数的复杂分析特性仍然是一个挑战,将大多数用途限制在参数极少或非参数模型的模型上。在本文中,我们侧重于双变量案例,并提出了以半参数方式估计这一功能参数的新办法。我们的程序依赖于一系列的变异,包括威廉森的变异和从零同质浮标开始。 Spline 坐标适合通过最大可能性的估算,利用梯度优化,而不施加进一步的限制。我们的方法产生了高效和完全一致的解决办法。我们成功地进行了模拟和现实世界数据方面的一些实验。具体地说,我们测试了通过引力波探测LIGO和Virgo合作而收集的稀缺数据的方法。