Non-linear hierarchical models are commonly used in many disciplines. However, inference in the presence of non-nested effects and on large datasets is challenging and computationally burdensome. This paper provides two contributions to scalable and accurate inference. First, I derive a new mean-field variational algorithm for estimating binomial logistic hierarchical models with an arbitrary number of non-nested random effects. Second, I propose "marginally augmented variational Bayes" (MAVB) that further improves the initial approximation through a step of Bayesian post-processing. I prove that MAVB provides a guaranteed improvement in the approximation quality at low computational cost and induces dependencies that were assumed away by the initial factorization assumptions. I apply these techniques to a study of voter behavior using a high-dimensional application of the popular approach of multilevel regression and post-stratification (MRP). Existing estimation took hours whereas the algorithms proposed run in minutes. The posterior means are well-recovered even under strong factorization assumptions. Applying MAVB further improves the approximation by partially correcting the under-estimated variance. The proposed methodology is implemented in an open source software package.


翻译:许多学科通常使用非线性等级模型,然而,在非自发效应和大型数据集面前的推论具有挑战性和计算性负担性。本文为可缩放和准确推算提供了两种贡献。首先,我得出一种新的平均场变异算法,用于估算二元论后勤等级模型,其中任意使用大量非自发随机效应。第二,我提议“边际扩大变异性贝贝兹”(MAVB),通过巴耶西亚后处理步骤进一步改进初始近似。我证明,MAVB保证以低计算成本提高近似质量,并引出最初因因素化假设所假设的依附性。我将这些技术应用于使用多层次回归和批准后流行方法的高度应用选民行为研究。现有估计需要几个小时,而所提议的算法则在几分钟内运行。即使根据强度系数化假设,后方位方法也得到了很好的恢复。应用MAVB进一步提高近似性,部分纠正了低估的软件。拟议方法在源中采用。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月15日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员