We consider the Ensemble Kalman Inversion which has been recently introduced as an efficient, gradient-free optimisation method to estimate unknown parameters in an inverse setting. In the case of large data sets, the Ensemble Kalman Inversion becomes computationally infeasible as the data misfit needs to be evaluated for each particle in each iteration. Here, randomised algorithms like stochastic gradient descent have been demonstrated to successfully overcome this issue by using only a random subset of the data in each iteration, so-called subsampling techniques. Based on a recent analysis of a continuous-time representation of stochastic gradient methods, we propose, analyse, and apply subsampling-techniques within Ensemble Kalman Inversion. Indeed, we propose two different subsampling techniques: either every particle observes the same data subset (single subsampling) or every particle observes a different data subset (batch subsampling).
翻译:我们认为,最近引入的“Ensemble Kalman Inversion”是一种高效的、无梯度的优化方法,用来在反向环境中估计未知参数。在大型数据集中,“Ensemble Kalman Inversion”在计算上变得不可行,因为数据不匹配需要在每个迭代中为每个粒子进行评估。在这里,像“Stochacistic 梯度下降”这样的随机算法已经证明能够成功地克服这一问题,它仅使用每个迭代中数据的一个随机子集,即所谓的子取样技术。根据最近对随机梯度方法连续时间代表的分析,我们提议、分析和在“Ensemble Kalman Inversion”中应用子取样技术。事实上,我们提出了两种不同的子取样技术:要么每个粒子观察相同的数据子集(单子采样),要么每个粒子观察不同的数据组(批次取样)或每个粒子观测不同的数据子(批次取样)。