Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA
翻译:材料发现需要在广阔的化学与结构空间中导航,同时满足多个常相互冲突的目标。本文提出LLM引导的材料设计进化框架(LLEMA),该统一框架将大语言模型中蕴含的科学知识与化学启发的进化规则及基于记忆的优化机制相结合。在每次迭代中,大语言模型在明确的性质约束下提出具有晶体学特征的候选材料;代理模型增强的评估器预测其物理化学性质;多目标评分器则更新成功/失败记忆以指导后续迭代。在涵盖电子、能源、涂层、光学与航空航天领域的14项实际任务评估中,LLEMA发现的候选材料兼具化学合理性、热力学稳定性与性质匹配度,相比纯生成模型与纯大语言模型基线获得了更高的命中率与更强的帕累托前沿。消融实验证实了规则引导生成、基于记忆的优化及代理预测机制的重要性。通过强制合成可行性与多目标权衡,LLEMA为加速实用材料发现提供了系统化路径。代码:https://github.com/scientific-discovery/LLEMA
Material Design Guidelines