Communication efficiency is crucial in federated learning. Conducting many local training steps in clients to reduce the communication frequency between clients and the server is a common method to address this issue. However, the client drift problem arises as the non-i.i.d. data distributions in different clients can severely deteriorate the performance of federated learning. In this work, we propose a new SGD variant named as DOMO to improve the model performance in federated learning, where double momentum buffers are maintained. One momentum buffer tracks the server update direction, while the other tracks the local update direction. We introduce a novel server momentum fusion technique to coordinate the server and local momentum SGD. We also provide the first theoretical analysis involving both the server and local momentum SGD. Extensive experimental results show a better model performance of DOMO than FedAvg and existing momentum SGD variants in federated learning tasks.


翻译:通信效率在联谊学习中至关重要。 在客户中采取许多当地培训步骤以减少客户与服务器之间的通信频率,是解决这一问题的共同方法。然而,客户的漂移问题产生的原因是,不同客户中的数据分布会严重恶化联谊学习的绩效。在这项工作中,我们提议一个新的SGD变式,称为DOM,以提高联谊学习的模型性能,在这种学习中保持双动缓冲。一个势头缓冲跟踪服务器的更新方向,而另一个则跟踪本地更新方向。我们采用了一种新的服务器动力聚合技术,以协调服务器和本地动力 SGD。我们还提供了第一次涉及服务器和本地动力SGD的理论分析。广泛的实验结果显示DOM比FDAvg更好的模型性性能,在联谊学习任务中现有的动力 SGD变式。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
已删除
将门创投
3+阅读 · 2017年11月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Federated Learning: A Signal Processing Perspective
Arxiv
2+阅读 · 2021年3月31日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
已删除
将门创投
3+阅读 · 2017年11月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员