Federated learning provides a communication-efficient and privacy-preserving training process by enabling learning statistical models with massive participants while keeping their data in local clients. However, standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions from outliers, systematic mislabeling, or even adversaries. In addition, it is often prohibited for service providers to verify the quality of data samples due to the increasing concern of user data privacy. In this paper, we address this challenge by proposing Auto-weighted Robust Federated Learning (arfl), a novel approach that jointly learns the global model and the weights of local updates to provide robustness against corrupted data sources. We prove a learning bound on the expected risk with respect to the predictor and the weights of clients, which guides the definition of the objective for robust federated learning. The weights are allocated by comparing the empirical loss of a client with the average loss of the best p clients (p-average), thus we can downweight the clients with significantly high losses, thereby lower their contributions to the global model. We show that this approach achieves robustness when the data of corrupted clients is distributed differently from benign ones. To optimize the objective function, we propose a communication-efficient algorithm based on the blockwise minimization paradigm. We conduct experiments on multiple benchmark datasets, including CIFAR-10, FEMNIST and Shakespeare, considering different deep neural network models. The results show that our solution is robust against different scenarios including label shuffling, label flipping and noisy features, and outperforms the state-of-the-art methods in most scenarios.


翻译:联邦学习通过让大量参与者学习统计模型,并保留他们在当地客户中的数据,提供了一个沟通高效和隐私保护的培训过程。然而,标准的联邦学习技术,将平均损失功能天真地降到最低程度,很容易受到外部线、系统标签错误或甚至对手的数据腐败的影响。此外,由于用户数据隐私日益受到关注,服务供应商往往被禁止核查数据样本的质量。本文通过提出自动加权罗布斯特联邦学习(ARfl)来应对这一挑战,这是一种新颖的方法,可以共同学习全球模型和本地更新的权重,以针对腐败的数据源提供稳健的准数据。我们证明,对于预期风险的联邦学习与客户的预测和权重有关,这些风险指导了强有力联邦学习的目标的界定。衡量权重是通过将客户的经验损失与最佳客户的平均损失(平均)进行比较来分配的,这样我们就可以降低客户的准确性损失,从而降低它们对全球模型的贡献。我们证明,当我们最接近腐败数据时,我们实现了稳健的稳健度, 包括以最坏的汇率模型模型模型为主,我们以不同的汇率模型为主,我们以不同的标准,我们以不同的标准的汇率计算。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
45+阅读 · 2020年10月31日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员