There has been a large literature of neural architecture search, but most existing work made use of heuristic rules that largely constrained the search flexibility. In this paper, we first relax these manually designed constraints and enlarge the search space to contain more than $10^{160}$ candidates. In the new space, most existing differentiable search methods can fail dramatically. We then propose a novel algorithm named Gradual One-Level Differentiable Neural Architecture Search (GOLD-NAS) which introduces a variable resource constraint to one-level optimization so that the weak operators are gradually pruned out from the super-network. In standard image classification benchmarks, GOLD-NAS can find a series of Pareto-optimal architectures within a single search procedure. Most of the discovered architectures were never studied before, yet they achieve a nice tradeoff between recognition accuracy and model complexity. We believe the new space and search algorithm can advance the search of differentiable NAS.


翻译:有大量神经结构搜索文献, 但大部分现有工作都使用了主要限制搜索灵活性的超自然规则。 在本文中, 我们首先放松这些手工设计的制约, 扩大搜索空间, 以包含超过 10 ⁇ 160 美元的候选人。 在新空间中, 大部分现有的差异搜索方法可能大打折扣。 然后我们提出了一个名为“ 渐进单级差异神经结构搜索” (GOLD- NAS) 的新型算法, 给一级优化引入了可变资源限制, 以便弱操作员逐渐从超级网络中分离出来。 在标准图像分类基准中, GOLD- NAS 可以在单一的搜索程序中找到一系列最佳结构。 大多数发现的结构以前从未进行过研究, 但是在识别精确度和模型复杂度之间实现了一个良好的平衡。 我们相信, 新的空间和搜索算法可以推进不同NAS 的搜索 。

0
下载
关闭预览

相关内容

【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
专知会员服务
61+阅读 · 2020年3月19日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员