The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k \geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
翻译:众所周知的断绝路径问题在于决定一个图形是否包含 kponidwise 脱联路径, 每一个都连接了一组 k diffet 配对的不同终端配对。 我们确定, 除两个案例外, 无H$ 的断开路径问题的复杂性。 如果 $k$ 固定下来, 我们就会获得 $k$- Distwoint 路径问题, 众所周知, 每1 $k\ geq 1 在所有图表的类别中都是多元时可溶解的。 如果我们需要连接终端组的顶点而不是终端组的顶点, 后者将不再维持。 我们完全分类了 $k$H$ free 的断开连接子图的复杂性, 并对断通的断开的图形的断通分层作了几乎完全的分类 。