Microscopically understanding and classifying phases of matter is at the heart of strongly-correlated quantum physics. With quantum simulations, genuine projective measurements (snapshots) of the many-body state can be taken, which include the full information of correlations in the system. The rise of deep neural networks has made it possible to routinely solve abstract processing and classification tasks of large datasets, which can act as a guiding hand for quantum data analysis. However, though proven to be successful in differentiating between different phases of matter, conventional neural networks mostly lack interpretability on a physical footing. Here, we combine confusion learning with correlation convolutional neural networks, which yields fully interpretable phase detection in terms of correlation functions. In particular, we study thermodynamic properties of the 2D Heisenberg model, whereby the trained network is shown to pick up qualitative changes in the snapshots above and below a characteristic temperature where magnetic correlations become significantly long-range. We identify the full counting statistics of nearest neighbor spin correlations as the most important quantity for the decision process of the neural network, which go beyond averages of local observables. With access to the fluctuations of second-order correlations -- which indirectly include contributions from higher order, long-range correlations -- the network is able to detect changes of the specific heat and spin susceptibility, the latter being in analogy to magnetic properties of the pseudogap phase in high-temperature superconductors. By combining the confusion learning scheme with transformer neural networks, our work opens new directions in interpretable quantum image processing being sensible to long-range order.


翻译:---- 基于波动的可解释量子多体快照分析方案 翻译摘要: 微观理解和分类物质的各个相态是强相关量子物理的核心所在。通过量子模拟,可以采取真实的投影测量(快照),其中包含系统中相关性的全部信息。深度神经网络的出现,使得解决大型数据集的抽象处理和分类任务变得很容易,这可以作为量子数据分析的一个指导性手段。然而,虽然传统神经网络被证明在区分不同相态方面非常成功,但大多数情况下缺乏物理上的可解释性。在这里,我们将混淆学习与相关卷积神经网络相结合,得到以相关函数为基础的全面可解释的相态检测。具体而言,我们研究了二维海森堡模型的热力学性质,在此模型下训练的神经网络被证明可以捕捉到磁性相关在一个特征温度上变得显著远程的上下变化。我们确定最近邻自旋相关的全计数统计量是神经网络决策过程中最重要的量,这超越了本地可观测量的平均值。通过获得二阶相关的波动,间接包含来自高阶远程相关的贡献,网络能够检测出比热和自旋磁化率的变化,后者类比于高温超导体中伪能隙相的磁性质。通过将混淆学习方案与转换神经网络相结合,我们的工作在可解释的量子图像处理方面开辟了新的方向,这种方法对远程秩序敏感。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员