Modeling an unknown dynamical system is crucial in order to predict the future behavior of the system. A standard approach is training recurrent models on measurement data. While these models typically provide exact short-term predictions, accumulating errors yield deteriorated long-term behavior. In contrast, models with reliable long-term predictions can often be obtained, either by training a robust but less detailed model, or by leveraging physics-based simulations. In both cases, inaccuracies in the models yield a lack of short-time details. Thus, different models with contrastive properties on different time horizons are available. This observation immediately raises the question: Can we obtain predictions that combine the best of both worlds? Inspired by sensor fusion tasks, we interpret the problem in the frequency domain and leverage classical methods from signal processing, in particular complementary filters. This filtering technique combines two signals by applying a high-pass filter to one signal, and low-pass filtering the other. Essentially, the high-pass filter extracts high-frequencies, whereas the low-pass filter extracts low frequencies. Applying this concept to dynamics model learning enables the construction of models that yield accurate long- and short-term predictions. Here, we propose two methods, one being purely learning-based and the other one being a hybrid model that requires an additional physics-based simulator.
翻译:模拟一个未知的动态系统对于预测系统的未来行为至关重要。 一种标准的方法是培训关于测量数据的经常性模型。 虽然这些模型通常提供精确的短期预测, 累积错误会产生恶化的长期行为。 相反, 可靠的长期预测模型往往可以通过训练一个强大但不太详细的模型, 或者通过利用物理模拟来获得。 在这两种情况下, 模型中的不准确性能导致缺乏短期细节。 因此, 不同时空线上具有对比性的不同模型存在。 这一观察立即提出了问题 : 我们能否获得将两个世界的最佳组合起来的预测? 在传感器聚合任务的启发下, 我们解释频率域的问题, 并利用信号处理特别是补充过滤器的经典方法。 这种过滤技术将两种信号结合起来, 对一个信号应用高通路过滤器, 而对另一个信号进行低通路过滤。 基本上, 高通过滤器提取了不同时空的特性, 而低通过滤器则提取了低频率。 将这个概念应用到动态模型, 使得我们能够构建一种精确的周期性模型, 需要另外一种模型, 来构建一种精确的物理, 。</s>