In this paper, we present a polynomial-time algorithm for the maximum clique problem, which implies P = NP. Our algorithm is based on a continuous game-theoretic representation of this problem and at its heart lies a discrete-time dynamical system. The rule of our dynamical system depends on a parameter such that if this parameter is equal to the maximum-clique size, the iterates of our dynamical system are guaranteed to converge to a maximum clique.


翻译:在本文中,我们为最大分类问题提出了一个多元时间算法,这意味着 P = NP。我们的算法基于对该问题的持续游戏理论表达,其核心是一个离散的时间动态系统。我们动态系统的规则取决于一个参数,如果这个参数等于最大分类大小,那么我们动态系统的迭代就能够保证与最大分类趋同。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年8月3日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
0+阅读 · 2022年2月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员