The identification of boosted heavy particles such as top quarks or vector bosons is one of the key problems arising in experimental studies at the Large Hadron Collider. In this article, we introduce LundNet, a novel jet tagging method which relies on graph neural networks and an efficient description of the radiation patterns within a jet to optimally disentangle signatures of boosted objects from background events. We apply this framework to a number of different benchmarks, showing significantly improved performance for top tagging compared to existing state-of-the-art algorithms. We study the robustness of the LundNet taggers to non-perturbative and detector effects, and show how kinematic cuts in the Lund plane can mitigate overfitting of the neural network to model-dependent contributions. Finally, we consider the computational complexity of this method and its scaling as a function of kinematic Lund plane cuts, showing an order of magnitude improvement in speed over previous graph-based taggers.
翻译:在大型强子对撞机实验研究中,发现高重重粒子,如顶部夸克或矢量波孙,是出现的主要问题之一。在本篇文章中,我们引入了LundNet,这是一个新型的喷射标记方法,它依赖图形神经网络,高效描述喷射机内的辐射模式,以最佳地解析背景事件所振动的物体的特征。我们将这个框架应用于若干不同的基准,表明顶级标记的性能与现有最新算法相比有了显著改善。我们研究了LundNet标记仪对非扰动和探测器效应的稳健性,并展示了Lund 平面上的运动性切割如何减轻神经网络对依赖模型的贡献的过度。最后,我们把这种方法的计算复杂性及其缩放作为动态Lund平面切割的功能,显示比以前的图形标记仪速度有一定的提高。