Fluid flows in coupled systems consisting of a free-flow region and the adjacent porous medium appear in a variety of environmental settings and industrial applications. In many applications, fluid flow is non-parallel to the fluid-porous interface that requires a generalisation of the Beavers-Joseph coupling condition typically used for the Stokes-Darcy problem. Generalised coupling conditions valid for arbitrary flow directions to the interface are recently derived using the theory of homogenisation and boundary layers. The aim of this work is the mathematical analysis of the Stokes-Darcy problem with these generalised interface conditions. We prove the existence and uniqueness of the weak solution of the coupled problem. The well-posedness is guaranteed under a suitable relationship between the permeability and the boundary layer constants containing geometrical information about the porous medium and the interface. We numerically study the validity of the obtained results for realistic problems and provide a benchmark for numerical solution of the Stokes-Darcy problem with generalised interface conditions.
翻译:由自由流通区和相邻的多孔介质构成的结合系统中的流体流体流动出现在各种环境环境和工业应用中。在许多应用中,流体流动不是与流体-多孔界面的平行,这需要概括用于斯托克斯-达尔西问题的典型比弗斯-约瑟夫混合条件。对于任意流向界面的任意流向,最近利用同质化理论和边界层来得出通用的混合条件。这项工作的目的是用这些普遍化的界面条件对斯托克斯-达尔西问题进行数学分析。我们证明存在并存问题的薄弱解决办法,而且非常独特。在包含关于多孔介质和界面的几何信息的适当关系下,保证了妥善的结合性。我们用数字研究获得的结果对现实问题的有效性,并为斯托克斯-达尔西问题与一般界面条件的数字解决方案提供一个基准。