The density profiles of dark matter halos are typically modeled using empirical formulae fitted to the density profiles of relaxed halo populations. We present a neural network model that is trained to learn the mapping from the raw density field containing each halo to the dark matter density profile. We show that the model recovers the widely-used Navarro-Frenk-White (NFW) profile out to the virial radius, and can additionally describe the variability in the outer profile of the halos. The neural network architecture consists of a supervised encoder-decoder framework, which first compresses the density inputs into a low-dimensional latent representation, and then outputs $\rho(r)$ for any desired value of radius $r$. The latent representation contains all the information used by the model to predict the density profiles. This allows us to interpret the latent representation by quantifying the mutual information between the representation and the halos' ground-truth density profiles. A two-dimensional representation is sufficient to accurately model the density profiles up to the virial radius; however, a three-dimensional representation is required to describe the outer profiles beyond the virial radius. The additional dimension in the representation contains information about the infalling material in the outer profiles of dark matter halos, thus discovering the splashback boundary of halos without prior knowledge of the halos' dynamical history.
翻译:暗物质光环的密度剖面通常使用与放松光环的密度剖面相匹配的经验公式模型来模拟暗物质光环的密度剖面。 我们展示了一个神经网络模型, 该模型经过培训, 从包含每光光向暗物质密度剖面的原始密度场进行绘图; 我们显示该模型将广泛使用的 Navarro- Frenk-White (NFW) 剖面恢复到病毒半径, 并可以补充描述光环外貌剖面图的变异性。 神经网络结构包括一个受监督的编码解密框架, 它首先将密度输入压缩到低维潜表层中, 然后将输出出$\rho(r), 用于任何理想的半径值。 该模型包含用于预测密度剖面图的所有信息。 这使我们能够通过量化代表面和豪洛氏地的地平面密度剖面剖面图之间的相互信息来解释潜在表达面。 双维表示器足以准确模拟到圆形半径的密度剖面图; 然而, 需要用三维代表来描述远方的外部剖面剖面图, 。 因此, 历史前的外部剖面图包含的外部剖面图中, 包含前的外部图的外图中, 的外层图层图层图层图层图层图层。