Graph representation learning is a fundamental research issue and benefits a wide range of applications on graph-structured data. Conventional artificial neural network-based methods such as graph neural networks (GNNs) and variational graph auto-encoders (VGAEs) have achieved promising results in learning on graphs, but they suffer from extremely high energy consumption during training and inference stages. Inspired by the bio-fidelity and energy-efficiency of spiking neural networks (SNNs), recent methods attempt to adapt GNNs to the SNN framework by substituting spiking neurons for the activation functions. However, existing SNN-based GNN methods cannot be applied to the more general multi-node representation learning problem represented by link prediction. Moreover, these methods did not fully exploit the bio-fidelity of SNNs, as they still require costly multiply-accumulate (MAC) operations, which severely harm the energy efficiency. To address the above issues and improve energy efficiency, in this paper, we propose an SNN-based deep generative method, namely the Spiking Variational Graph Auto-Encoders (S-VGAE) for efficient graph representation learning. To deal with the multi-node problem, we propose a probabilistic decoder that generates binary latent variables as spiking node representations and reconstructs graphs via the weighted inner product. To avoid the MAC operations for energy efficiency, we further decouple the propagation and transformation layers of conventional GNN aggregators. We conduct link prediction experiments on multiple benchmark graph datasets, and the results demonstrate that our model consumes significantly lower energy with the performances superior or comparable to other ANN- and SNN-based methods for graph representation learning.


翻译:图表代表学是一个根本性的研究问题,有利于图表结构数据的广泛应用。常规人工神经网络方法,如图形神经网络(GNNS)和变换图自动编码器(VGAEs),在图表学习方面取得了令人乐观的成果,但在培训和推论阶段,它们受到极高的能量消耗的影响。受到喷发神经网络的生物纤维化和能源效率的启发,最近试图将GNNS与SNNN框架接轨的方法,取代启动功能的弹出神经元。然而,现有的SNNN多神经网络方法不能适用于链接预测所代表的更普遍的多节点教学学习问题。此外,这些方法没有充分利用SNNDS的生物纤维,因为它们仍然需要昂贵的倍增量(MAC)操作,这严重损害了能源效率。为了解决上述问题,提高能源效率,我们在本文件中提出了一种基于SNNNE的深度测序方法,即Spiking Varicial Scial Scial Scidealal 和SBIRCL,我们用高压的S-S-SGNBLL 动作, 和SDrecial-Sdeal Sdeal 演示,我们用一个高效的S-SDLLLA,我们通过S-S-S-SDLILLLLLLLA, 学习的模拟的数值分析, 和SDLUDLLLLA, 演示,我们用一个高效的深度变压的计算。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
15+阅读 · 2018年4月5日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员