Deep convolutional neural network (CNN) achieves remarkable performance for medical image analysis. UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates features from both encoder and decoder paths to extract multi-contextual information from image data. The multi-scaled features play an essential role in brain tumor segmentation. However, the limited use of features can degrade the performance of the UNet approach for segmentation. In this paper, we propose a modified UNet architecture for brain tumor segmentation. In the proposed architecture, we used densely connected blocks in both encoder and decoder paths to extract multi-contextual information from the concept of feature reusability. In addition, residual-inception blocks (RIB) are used to extract the local and global information by merging features of different kernel sizes. We validate the proposed architecture on the multi-modal brain tumor segmentation challenge (BRATS) 2020 testing dataset. The dice (DSC) scores of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) are 89.12%, 84.74%, and 79.12%, respectively.
翻译:深层神经神经网络(CNN) 取得了医学图像分析的显著性能。 Unet 是运行 3D CNN 的医学成像任务(包括脑肿瘤断裂) 3D CNN 结构的主要源头, 包括脑肿瘤断裂。 Unet 结构的跳接连接来自编码器和解码器路径, 以从图像数据中提取多文本信息。 多尺度特征在脑肿瘤分解中起着关键作用。 然而, 功能的有限使用可以降低 Uet 方法分解的性能 。 在本文中, 我们提出修改脑肿瘤分解的 Unet 结构。 在拟议的结构中, 我们使用编码器和分解码器路径的密区块来从特征可变概念中提取多文本信息。 此外, 残余感应区块(RIB) 用于通过整合不同内核大小的特性来提取本地和全球信息。 我们验证了拟议的多模式脑肿瘤分解(BRATS) 2020 挑战的功能结构 。 在拟议的结构中, 我们使用混合的编码(DSC) 和解剖(TWT) 分别是 8912%、 核心(T) 和核心(TC) 分别是8912%、 和 。