Consider a heterogeneous data stream being generated by the nodes of a graph. The data stream is in essence composed by multiple streams, possibly of different nature that depends on each node. At a given moment $\tau$, a change-point occurs for a subset of nodes $C$, signifying the change in the probability distribution of their associated streams. In this paper we propose an online non-parametric method to infer $\tau$ based on the direct estimation of the likelihood-ratio between the post-change and the pre-change distribution associated with the data stream of each node. We propose a kernel-based method, under the hypothesis that connected nodes of the graph are expected to have similar likelihood-ratio estimates when there is no change-point. We demonstrate the quality of our method on synthetic experiments and real-world applications.
翻译:考虑一个图表的节点产生的不同数据流。 数据流本质上是由多个流组成的, 可能具有不同的性质, 取决于每个节点。 在某个时刻, $\tau$, 一个节点子子出现变化点, 表示其相关流的概率分布发生变化。 在本文中, 我们提出了一个在线非参数方法, 以直接估计每个节点的数据流在变化后和变化前分布之间的可能性为根据, 推算$\tau$。 我们提出了一个内核法, 假设在没有变化点的情况下, 相连接的图表节点的概率估计会相似。 我们展示了我们合成实验和现实世界应用方法的质量 。