As the complexity of production processes increases, the diversity of data types drives the development of network monitoring technology. This paper mainly focuses on an online algorithm to detect serially correlated directed networks robustly and sensitively. First, we consider a transition probability matrix to resolve the double correlation of primary data. Further, since the sum of each row of the transition probability matrix is one, it standardizes the data, facilitating subsequent modeling. Then we extend the spring length based method to the multivariate case and propose an adaptive cumulative sum (CUSUM) control chart on the strength of a weighted statistic to monitor directed networks. This novel approach assumes only that the process observation is associated with nearby points without any parametric time series model, which is in line with reality. Simulation results and a real example from metro transportation demonstrate the superiority of our design.


翻译:随着生产过程的复杂性增加,数据类型的多样性推动了网络监测技术的发展。本文件主要侧重于一种在线算法,以强有力和敏感的方式探测与序列相关的定向网络。首先,我们考虑一个过渡概率矩阵,以解决初级数据的双重相关性。此外,由于过渡概率矩阵每行的总和是一,它使数据标准化,为随后的建模提供便利。然后,我们将春季基于方法的长度扩大到多变量案例,并根据加权统计数据的强度提出一个适应性累积(CUUUM)控制图表,以监测定向网络。这种新颖的方法假设,进程观测仅与附近点相关,而没有任何参数时间序列模型,符合现实。模拟结果和地铁运输的一个实际例子显示了我们设计的优越性。

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
5+阅读 · 2019年2月28日
Arxiv
12+阅读 · 2019年1月24日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
4+阅读 · 2018年6月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员