This paper presents a method for the normal estimation of mirrors and transparent objects that are difficult to recognize with a camera. To create a diffuse reflective surface, we propose spraying water vapor onto transparent or mirror surfaces. In the proposed method, we move an ultrasonic humidifier equipped on the tip of a robotic arm to apply sprayed water vapor onto the plane of a target object to form a cross-shaped misted area. Diffuse reflective surfaces are partially generated as misted areas, which allows the camera to detect the surface of the target object. The viewpoint of the gripper-mounted camera is adjusted such that the extracted misted area appears to be the largest in the image, and finally, the plane normal of the target object surface is estimated. Normal estimation experiments were conducted to evaluate the effectiveness of the proposed method. The RMSEs of the azimuth estimation for the mirror and transparent glass were approximately 4.2 and 5.8 degrees, respectively. Consequently, our robot experiments demonstrate that our robotic wiper can perform contact-force-regulated wiping motions to clean a transparent window, as humans do.


翻译:基于活性蒸汽的机器人擦窗器 本文提出一种估计难以使用摄像机识别的镜面和透明物体的法线的方法。为了制造漫反射表面,我们建议在透明或镜面表面上喷洒水蒸气。在所提出的方法中,我们移动一个装有超声波加湿器的机器人臂的尖端,将喷雾的水蒸气施加在目标物体的平面上,形成十字状的喷雾区域。将雾区域部分生成为漫反射表面,使摄像机能够检测目标物体的表面。调整夹持装置安装的摄像机的视点,使提取的雾化区域在图像中最大,最终估计目标物体表面的平面法线。进行了法线估计实验,以评估所提出方法的有效性。对于镜面和透明玻璃的方位角估计的均方根误差(RMSE)分别为约4.2度和5.8度。因此,我们的机器人实验证明了我们的机器人擦窗器可以像人类一样进行接触力调节的擦拭运动。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
31+阅读 · 2021年6月12日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Regulated Pure Pursuit for Robot Path Tracking
Arxiv
0+阅读 · 2023年5月31日
Arxiv
12+阅读 · 2021年8月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员