Improving performance in multiple domains is a challenging task, and often requires significant amounts of data to train and test models. Active learning techniques provide a promising solution by enabling models to select the most informative samples for labeling, thus reducing the amount of labeled data required to achieve high performance. In this paper, we present an active learning-based framework for improving performance across multiple domains. Our approach consists of two stages: first, we use an initial set of labeled data to train a base model, and then we iteratively select the most informative samples for labeling to refine the model. We evaluate our approach on several multi-domain datasets, including image classification, sentiment analysis, and object recognition. Our experiments demonstrate that our approach consistently outperforms baseline methods and achieves state-of-the-art performance on several datasets. We also show that our method is highly efficient, requiring significantly fewer labeled samples than other active learning-based methods. Overall, our approach provides a practical and effective solution for improving performance across multiple domains using active learning techniques.
翻译:在多个领域中提高性能是一项具有挑战性的任务,通常需要大量的数据来训练和测试模型。主动学习技术通过使模型选择最具信息的样本进行标记,从而减少了达到高性能所需的标记数据量,提供了一种有希望的解决方案。在本文中,我们提出了一种基于主动学习的框架,用于改善多个领域中的性能。我们的方法包括两个步骤:首先,我们使用一组标记数据来训练基础模型,然后我们迭代地选择最具信息的样本进行标记,从而完善模型。我们在几个多领域数据集上评估了我们的方法,包括图像分类、情感分析和物体识别。我们的实验表明,我们的方法始终优于基准方法,并在几个数据集上实现了最先进的性能。我们还表明,我们的方法高效,需要的标记样本数量比其他基于主动学习的方法少得多。总体而言,我们的方法提供了一种实用有效的解决方案,可使用主动学习技术改善多个领域中的性能。