We study the problem of online learning (OL) from revealed preferences: a learner wishes to learn a non-strategic agent's private utility function through observing the agent's utility-maximizing actions in a changing environment. We adopt an online inverse optimization setup, where the learner observes a stream of agent's actions in an online fashion and the learning performance is measured by regret associated with a loss function. We first characterize a special but broad class of agent's utility functions, then utilize this structure in designing a new convex loss function. We establish that the regret with respect to our new loss function also bounds the regret with respect to all other usual loss functions in the literature. This allows us to design a flexible OL framework that enables a unified treatment of loss functions and supports a variety of online convex optimization algorithms. We demonstrate with theoretical and empirical evidence that our framework based on the new loss function (in particular online Mirror Descent) has significant advantages in terms of regret performance and solution time over other OL algorithms from the literature and bypasses the previous technical assumptions as well.


翻译:我们从披露的偏好中研究在线学习(OL)的问题:学习者希望通过观察代理人在变化环境中的效用最大化行动来学习非战略代理人的私人公用事业功能。我们采用了在线反优化设置,学习者以在线方式观察代理人的一系列行动,学习表现是通过与损失功能有关的遗憾来衡量的。我们首先将代理人的效用功能分为一个特殊但广泛的类别,然后在设计新的 convex损失功能时利用这一结构。我们确定,对新损失功能的遗憾也使我们对文献中所有其他通常的损失功能感到遗憾。这使我们能够设计一个灵活的OL框架,以便能够统一处理损失功能,并支持各种在线的convex优化算法。我们用理论和实验证据证明,我们基于新的损失功能(特别是在线Mira Crainfor)的框架在遗憾表现和解决时间方面比文献中的其他OL算法有很大的优势,并绕过以前的技术假设。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年12月30日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员