To enable emerging applications such as deep machine learning and graph processing, 3D network-on-chip (NoC) enabled heterogeneous manycore platforms that can integrate many processing elements (PEs) are needed. However, designing such complex systems with multiple objectives can be challenging due to the huge associated design space and long evaluation times. To optimize such systems, we propose a new multi-objective design space exploration framework called MOELA that combines the benefits of evolutionary-based search with a learning-based local search to quickly determine PE and communication link placement to optimize multiple objectives (e.g., latency, throughput, and energy) in 3D NoC enabled heterogeneous manycore systems. Compared to state-of-the-art approaches, MOELA increases the speed of finding solutions by up to 128x, leads to a better Pareto Hypervolume (PHV) by up to 12.14x and improves energy-delay-product (EDP) by up to 7.7% in a 5-objective scenario.


翻译:为使深层机器学习和图表处理等新兴应用成为可能,需要3D网络芯片(NOC)使多种多功能平台能够整合许多处理元素(PE),然而,设计这种具有多重目标的复杂系统,由于相关设计空间巨大且评价时间长,可能具有挑战性。为了优化这些系统,我们提议一个新的多目标空间探索框架,称为MOELA,将基于进化的搜索的好处与基于学习的本地搜索结合起来,以便迅速确定PE和通信连接位置,优化3D诺C启用的多功能系统中的多个目标(如延缓、吞吐和能源)。与最先进的方法相比,MOELA将寻找解决方案的速度提高至128x,导致以12.14x为基础改进Pareto 超容量(PHPHV),并在5-目标假设中提高能源脱落产品(EDP)至7.7%。</s>

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
20+阅读 · 2022年10月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员