Ocean buoy data in the form of high frequency multivariate time series are routinely recorded at many locations in the world's oceans. Such data can be used to characterise the ocean wavefield, which is important for numerous socio-economic and scientific reasons. This characterisation is typically achieved by modelling the frequency-direction spectrum, which decomposes spatiotemporal variability by both frequency and direction. State-of-the-art methods for estimating the parameters of such models do not make use of the full spatiotemporal content of the buoy observations due to unnecessary assumptions and smoothing steps. We explain how the multivariate debiased Whittle likelihood can be used to jointly estimate all parameters of such frequency-direction spectra directly from the recorded time series. When applied to North Sea buoy data, debiased Whittle likelihood inference reveals smooth evolution of spectral parameters over time. We discuss challenging practical issues including model misspecification, and provide guidelines for future application of the method.
翻译:以高频多变时间序列为形式的海洋浮标数据在世界海洋的许多地点经常记录。这些数据可用于描述海洋波场的特点,这对许多社会经济和科学原因都很重要。这种特征化通常通过对频率方向频谱进行建模来实现,这种频向频谱通过频率和方向分解造成时空变异。估计这些模型参数的先进方法由于不必要的假设和平稳步骤,没有利用浮标观测的全部空间时空内容。我们解释了如何利用多变偏差惠特尔概率来直接从记录的时间序列中联合估计这种频率光谱的所有参数。在对北海浮标数据应用时,偏差惠特尔概率的推断显示光谱参数随着时间的推移的顺利演变。我们讨论了具有挑战性的实际问题,包括模型误差,并为今后应用该方法提供了指南。