Recent papers [Ber'2022], [GP'2020], [DHZ'2019] have addressed different variants of the (\Delta + 1)-edge colouring problem by concatenating or gluing together many Vizing chains to form what Bernshteyn [Ber'2022] coined \emph{multi-step Vizing chains}. In this paper, we propose a slightly more general definition of this term. We then apply multi-step Vizing chain constructions to prove combinatorial properties of edge colourings that lead to (improved) algorithms for computing edge colouring across different models of computation. This approach seems especially powerful for constructing augmenting subgraphs which respect some notion of locality. First, we construct strictly local multi-step Vizing chains and use them to show a local version of Vizings Theorem thus confirming a recent conjecture of Bonamy, Delcourt, Lang and Postle [BDLP'2020]. Our proof is constructive and also implies an algorithm for computing such a colouring. Then, we show that for any uncoloured edge there exists an augmenting subgraph of size O(\Delta^{7}\log n), answering an open problem of Bernshteyn [Ber'2022]. Chang, He, Li, Pettie and Uitto [CHLPU'2018] show a lower bound of \Omega(\Delta \log \frac{n}{\Delta}) for the size of such augmenting subgraphs, so the upper bound is tight up to \Delta and constant factors. These ideas also extend to give a faster deterministic LOCAL algorithm for (\Delta + 1)-edge colouring running in \tilde{O}(\poly(\Delta)\log^6 n) rounds. These results improve the recent breakthrough result of Bernshteyn [Ber'2022], who showed the existence of augmenting subgraphs of size O(\Delta^6\log^2 n), and used these to give the first (\Delta + 1)-edge colouring algorithm in the LOCAL model running in O(\poly(\Delta, \log n)) rounds. ... (see paper for the remaining part of the abstract)
翻译:近期的文章[Ber'2022]、[GP'2020]、[DHZ'2019]通过连接或拼接多个Vizing链的方法,探讨了不同变体的(\Delta + 1)边着色问题。其中Bernshteyn[Ber'2022]提出了“多步Vizing链”的概念。本文在此基础上,提出了略微更一般的定义。我们将多步Vizing链构造应用于证明边着色的组合性质,从而导出在不同计算模型下计算边着色的(改进)算法。此方法似乎特别适用于构造遵守某种局部性概念的增广子图。首先,我们构造了严格局部的多步Vizing链,并利用它们证明了Vizing定理的局部版本,从而证实了Bonamy、Delcourt、Lang和Postle[BDLP'2020]的最近猜想。我们的证明是具有构造性的,还可推出一种计算这种着色的算法。然后,我们证明了对于任何未着色的边,都存在一个大小为O(\Delta^{7}\log n)的增广子图,回答了Bernshteyn[Ber'2022]的一个未解问题。Chang,He,Li,Pettie和Uitto[CHLPU'2018]给出了这种增广子图的下界为\Omega(\Delta \log \frac{n}{\Delta}),因此上界可缩放到\Delta和常数因子。这些思想还可推广为更快的确定性LOCAL算法,用于(\Delta + 1)边着色,运行时间为\tilde{O}(\poly(\Delta)\log^6 n)轮。这些结果改进了Bernshteyn[Ber'2022]最新的突破性成果,他证明了有大小为O(\Delta^6\log^2 n)的增广子图存在,并利用此结果给出了首个在LOCAL模型中执行O(\poly(\Delta, \log n))轮的(\Delta + 1)边着色算法。…(剩余部分请参见论文)。