Motivated by critical challenges and needs from biopharmaceuticals manufacturing, we propose a general metamodel-assisted stochastic simulation uncertainty analysis framework to accelerate the development of a simulation model with modular design for flexible production processes. There are often very limited process observations. Thus, there exist both simulation and model uncertainties in the system performance estimates. In biopharmaceutical manufacturing, model uncertainty often dominates. The proposed framework can produce a confidence interval that accounts for simulation and model uncertainties by using a metamodel-assisted bootstrapping approach. Furthermore, a variance decomposition is utilized to estimate the relative contributions from each source of model uncertainty, as well as simulation uncertainty. This information can be used to improve the system mean performance estimation. Asymptotic analysis provides theoretical support for our approach, while the empirical study demonstrates that it has good finite-sample performance.
翻译:以生物制药制造业的关键挑战和需求为动力,我们提议一个通用的元模型辅助模拟不确定性分析框架,以加速开发一个模拟模型,为灵活生产流程设计模块设计;因此,经常有非常有限的流程观测,因此,系统性能估计中存在模拟和模型不确定性。在生物制药制造业中,模型不确定性往往占主导地位。拟议框架可以产生一个信任间隔,通过采用元模型辅助靴式方法来计算模拟和模型不确定性。此外,还利用差异分解法来估计每个模型不确定性来源的相对贡献以及模拟不确定性。这一信息可用于改进系统平均性能估计。系统性能分析为我们的方法提供了理论支持,而实证研究表明它具有良好的有限性能。