Regression-based optimal fingerprinting techniques for climate change detection and attribution require the estimation of the forced signal as well as the internal variability covariance matrix in order to distinguish between their influences in the observational record. While previously developed approaches have taken into account the uncertainty linked to the estimation of the forced signal, there has been less focus on uncertainty in the covariance matrix describing natural variability, despite the fact that the specification of this covariance matrix is known to meaningfully impact the results. Here we propose a Bayesian optimal fingerprinting framework using a Laplacian basis function parameterization of the covariance matrix. This parameterization, unlike traditional methods based on principal components, does not require the basis vectors themselves to be estimated from climate model data, which allows for the uncertainty in estimating the covariance structure to be propagated to the optimal fingerprinting regression parameter. We show through a CMIP6 validation study that this proposed approach achieves better-calibrated coverage rates of the true regression parameter than principal component-based approaches. When applied to HadCRUT observational data, the proposed approach detects anthropogenic warming with higher confidence levels, and with lower variability over the choice of climate models, than principal-component-based approaches.
翻译:在探测和归属气候变化方面,基于回归的最佳指纹鉴别技术是最佳的,因此,需要估计强制信号以及内部变异性共变量矩阵,以区分观测记录中的影响,从而区分观测记录中的影响。虽然以前制定的办法考虑到与估计强迫信号有关的不确定性,但对于描述自然变异性的共差矩阵中的不确定性不够重视,尽管知道这一共差矩阵的规格能够对结果产生有意义的影响。我们在此提议采用一个采用拉普拉西安基功能参数参数参数化的共变量矩阵的巴伊西亚最佳指纹框架。这一参数化不同于以主要组成部分为基础的传统方法,并不要求根据气候模型数据对基矢量本身作出估计,因为气候模型数据使得估算共差结构的不确定性能够传播到最佳的指纹回归回归回归参数中。我们通过CMIP6的论证研究表明,这一拟议方法比主要组成部分基于主要方法更能对结果产生更有意义的影响。我们在这里提议采用一个采用巴耶西亚最佳的优化回归率参数框架,在应用HCDCRUT观测数据时,拟议的方法是用更高的信任水平探测人为变暖变暖,而主要分析方法比主模型的更低。