Probability calibration for deep models is highly desirable in safety-critical applications such as medical imaging. It makes output probabilities of deep networks interpretable, by aligning prediction probabilities with the actual accuracy in test data. In image segmentation, well-calibrated probabilities allow radiologists to identify regions where model-predicted segmentations are unreliable. These unreliable predictions often occur to out-of-domain (OOD) images that are caused by imaging artifacts or unseen imaging protocols. Unfortunately, most previous calibration methods for image segmentation perform sub-optimally on OOD images. To reduce the calibration error when confronted with OOD images, we propose a novel post-hoc calibration model. Our model leverages the pixel susceptibility against perturbations at the local level, and the shape prior information at the global level. The model is tested on cardiac MRI segmentation datasets that contain unseen imaging artifacts and images from an unseen imaging protocol. We demonstrate reduced calibration errors compared with the state-of-the-art calibration algorithm.
翻译:深海模型的概率校准在医学成像等安全关键应用中非常可取。 它通过将预测概率与测试数据的实际准确性相匹配,使深网络的输出概率可以解释。 在图像分解中,精确校准的概率使放射学家能够确定模型预测分解不可靠的区域。 这些不可靠的预测经常发生在由成像成像或无形成像协议造成的外部图像。 不幸的是,大多数先前的图像分解校准方法在OOD图像上表现了亚最佳性。 为了减少与OOOD图像相比的校准误差,我们提出了一个新型的热后校准模型。我们的模型利用像素感应力来防止地方一级的扰动,以及全球一级的形状信息。该模型在包含不可见成像工艺和来自不可见成像协议的图像的心脏MRI分解数据集上进行测试。 我们比状态校准算算法显示的校准错误减少。