This paper examines model parameter estimation in dynamic power systems whose governing electro-mechanical equations are ill-conditioned or singular. This ill-conditioning is because of converter-interfaced power systems generators' zero or small inertia contribution. Consequently, the overall system inertia decreases, resulting in low-inertia power systems. We show that the standard state-space model based on least squares or subspace estimators fails to exist for these models. We overcome this challenge by considering a least-squares estimator directly on the coupled swing-equation model but not on its transformed first-order state-space form. We specifically focus on estimating inertia (mechanical and virtual) and damping constants, although our method is general enough for estimating other parameters. Our theoretical analysis highlights the role of network topology on the parameter estimates of an individual generator. For generators with greater connectivity, estimation of the associated parameters is more susceptible to variations in other generator states. Furthermore, we numerically show that estimating the parameters by ignoring their ill-conditioning aspects yields highly unreliable results.
翻译:本文审视了管理电动机械方程式的动态动力系统模型参数估计,这些动力系统对电动机械方程式的调节条件不当或单一。这种不完善是因为转换器界面动力系统发电机的零或小惯性贡献。 因此,整个系统惯性下降,导致低内皮动力系统。 我们显示,基于最小方或子空间估计器的标准状态空间模型对这些模型并不存在。 我们克服了这一挑战,我们直接考虑在组合的回旋方程式模型上设置一个最小方位估计器,而不是直接考虑其转变的一阶状态空间表。 我们特别侧重于估算惯性(机械和虚拟)和阻塞常数,尽管我们的方法很一般,足以估计其他参数。 我们的理论分析突出了网络地形在单个发电机参数估计中的作用。 对于连接性较强的发电机,对相关参数的估计更易受其他发电机状态变化的影响。 此外,我们用数字显示,通过忽略其不可靠的调节方面来估计参数会产生非常不可靠的结果。