Accurate retinal vessel segmentation is challenging because of the complex texture of retinal vessels and low imaging contrast. Previous methods generally refine segmentation results by cascading multiple deep networks, which are time-consuming and inefficient. In this paper, we propose two novel methods to address these challenges. First, we devise a light-weight module, named multi-scale residual similarity gathering (MRSG), to generate pixel-wise adaptive filters (PA-Filters). Different from cascading multiple deep networks, only one PA-Filter layer can improve the segmentation results. Second, we introduce a response cue erasing (RCE) strategy to enhance the segmentation accuracy. Experimental results on the DRIVE, CHASE_DB1, and STARE datasets demonstrate that our proposed method outperforms state-of-the-art methods while maintaining a compact structure. Code is available at https://github.com/Limingxing00/Retinal-Vessel-Segmentation-ISBI20222.
翻译:由于视网膜容器的纹理复杂和成像对比低,精确的视网膜隔断具有挑战性。 以往的方法通常通过多深层网络的层层分离来改善分解结果,这些网络耗时耗时且效率低。 在本文件中,我们提出了两种应对这些挑战的新方法。 首先,我们设计了一个轻量模块,称为多规模的多级剩余相似集聚(MRSG),以产生像素-自适应过滤器(PA-Filters)。 不同于多个深层网络的层层,只有一个PA-Filter层可以改善分解结果。 其次,我们引入一个反应信号切除(RCE)战略,以提高分解准确性。 DVE、CHASE_DB1和STARE数据集的实验结果表明,我们拟议的方法在维持紧凑结构的同时,优于最新工艺方法。 代码可在 https://github.com/Limingxing00/Retinal-Vessel-Selegimentation-ISBI2022。