Training a generalizable 3D part segmentation network is quite challenging but of great importance in real-world applications. To tackle this problem, some works design task-specific solutions by translating human understanding of the task to machine's learning process, which faces the risk of missing the optimal strategy since machines do not necessarily understand in the exact human way. Others try to use conventional task-agnostic approaches designed for domain generalization problems with no task prior knowledge considered. To solve the above issues, we propose AutoGPart, a generic method enabling training generalizable 3D part segmentation networks with the task prior considered. AutoGPart builds a supervision space with geometric prior knowledge encoded, and lets the machine to search for the optimal supervisions from the space for a specific segmentation task automatically. Extensive experiments on three generalizable 3D part segmentation tasks are conducted to demonstrate the effectiveness and versatility of AutoGPart. We demonstrate that the performance of segmentation networks using simple backbones can be significantly improved when trained with supervisions searched by our method.
翻译:为解决这一问题,有些设计了特定任务解决方案,将人类对任务的理解转化为机器的学习过程,这有可能丢失最佳战略,因为机器不一定以人的方式理解。另一些则试图使用常规任务-不可知性方法,为没有任务前考虑的广化问题设计的常规任务-通化方法。为了解决上述问题,我们提议AutoGPart,这是一个通用方法,使培训通用的三维分化网络能够与先前考虑的任务相结合。AutoGPart建立了一个监督空间,事先具备几何学知识,使机器能够自动从空间寻找最佳监督,以完成具体的分解任务。对三种通用的三维分化任务进行了广泛的实验,以展示AutoGPart的效能和多功能。我们证明,在经过我们方法搜索的监督培训后,使用简单骨干分解网络的性能可以大大改进。