In this paper we consider Bayesian parameter inference for partially observed fractional Brownian motion (fBM) models. The approach we follow is to time-discretize the hidden process and then to design Markov chain Monte Carlo (MCMC) algorithms to sample from the posterior density on the parameters given data. We rely on a novel representation of the time discretization, which seeks to sample from an approximation of the posterior and then corrects via importance sampling; the approximation reduces the time (in terms of total observation time T) by O(T). This method is extended by using a multilevel MCMC method which can reduce the computational cost to achieve a given mean square error (MSE) versus using a single time discretization. Our methods are illustrated on simulated and real data.
翻译:在本文中,我们考虑了部分观测到的分数布朗运动(fBM)模型的巴伊西亚参数推论。我们所遵循的方法是时间分解隐藏过程,然后设计Markov连锁Monte Carlo(MCMC)算法,从给定参数的后方密度取样。我们依靠对时间分解的新描述,它试图从后方近似取样,然后通过重要取样进行校正;近似减少了O(T)的总观察时间(按总观察时间T计算)。这个方法通过多层次的MCMCM方法得到扩展,这种方法可以降低计算成本,实现给定的平均平方错误(MSE),而不是使用单一的时间分解。我们的方法是在模拟和实际数据上展示的。