Search-based test generators are effective at producing unit tests with high coverage. However, such automatically generated tests have no meaningful test and variable names, making them hard to understand and interpret by developers. On the other hand, large language models (LLMs) can generate highly readable test cases, but they are not able to match the effectiveness of search-based generators, in terms of achieved code coverage. In this paper, we propose to combine the effectiveness of search-based generators with the readability of LLM generated tests. Our approach focuses on improving test and variable names produced by search-based tools, while keeping their semantics (i.e., their coverage) unchanged. Our evaluation on nine industrial and open source LLMs show that our readability improvement transformations are overall semantically-preserving and stable across multiple repetitions. Moreover, a human study with ten professional developers, show that our LLM-improved tests are as readable as developer-written tests, regardless of the LLM employed.
翻译:暂无翻译