We design accelerated algorithms with improved rates for several fundamental classes of optimization problems. Our algorithms all build upon techniques related to the analysis of primal-dual extragradient methods via relative Lipschitzness proposed recently by [CST21]. (1) Separable minimax optimization. We study separable minimax optimization problems $\min_x \max_y f(x) - g(y) + h(x, y)$, where $f$ and $g$ have smoothness and strong convexity parameters $(L^x, \mu^x)$, $(L^y, \mu^y)$, and $h$ is convex-concave with a $(\Lambda^{xx}, \Lambda^{xy}, \Lambda^{yy})$-blockwise operator norm bounded Hessian. We provide an algorithm with gradient query complexity $\tilde{O}\left(\sqrt{\frac{L^{x}}{\mu^{x}}} + \sqrt{\frac{L^{y}}{\mu^{y}}} + \frac{\Lambda^{xx}}{\mu^{x}} + \frac{\Lambda^{xy}}{\sqrt{\mu^{x}\mu^{y}}} + \frac{\Lambda^{yy}}{\mu^{y}}\right)$. Notably, for convex-concave minimax problems with bilinear coupling (e.g.\ quadratics), where $\Lambda^{xx} = \Lambda^{yy} = 0$, our rate matches a lower bound of [ZHZ19]. (2) Finite sum optimization. We study finite sum optimization problems $\min_x \frac{1}{n}\sum_{i\in[n]} f_i(x)$, where each $f_i$ is $L_i$-smooth and the overall problem is $\mu$-strongly convex. We provide an algorithm with gradient query complexity $\tilde{O}\left(n + \sum_{i\in[n]} \sqrt{\frac{L_i}{n\mu}} \right)$. Notably, when the smoothness bounds $\{L_i\}_{i\in[n]}$ are non-uniform, our rate improves upon accelerated SVRG [LMH15, FGKS15] and Katyusha [All17] by up to a $\sqrt{n}$ factor. (3) Minimax finite sums. We generalize our algorithms for minimax and finite sum optimization to solve a natural family of minimax finite sum optimization problems at an accelerated rate, encapsulating both above results up to a logarithmic factor.
翻译:我们设计了快速算法, 用于一些基本的优化问题。 我们的算法都建立在与最近由[CST21] 提议的通过相对利普西特 分析原始- 异常方法有关的技术上。 (1) 我们研究微量优化问题 $\ min_ x\ max f(x) - g(y) + h(x), 美元和 $(g), 其中, 美元和 $(l) 平滑, 坚固的连接参数 $(Lx, muxx) 美元, $(L) 和 平价的(Lxxxxxx), 美元和 美元(Lambda), 美元和 阻塞的操作者 约束着Hesian 。 我们提供一种计算精度的计算法, 精度的复杂度 $(Lxxxxxxx) 。