This paper develops a novel stochastic tree ensemble method for nonlinear regression, referred to as Accelerated Bayesian Additive Regression Trees, or XBART. By combining regularization and stochastic search strategies from Bayesian modeling with computationally efficient techniques from recursive partitioning algorithms, XBART attains state-of-the-art performance at prediction and function estimation. Simulation studies demonstrate that XBART provides accurate point-wise estimates of the mean function and does so faster than popular alternatives, such as BART, XGBoost, and neural networks (using Keras) on a variety of test functions. Additionally, it is demonstrated that using XBART to initialize the standard BART MCMC algorithm considerably improves credible interval coverage and reduces total run-time. Finally, three basic theoretical results are established: 1) the single tree version of the model is asymptotically consistent, 2) samples obtained from the single-tree version of the algorithm correspond to posterior samples under a particular likelihood and prior specification, and 3) the Markov chain produced by the ensemble version of the algorithm has a unique stationary distribution.


翻译:本文为非线性回归开发了一种新型的随机树群共合法,称为加速巴伊西亚沉降树或AXART。通过将巴伊西亚模型的正规化和随机搜索战略与从循环分配算法中计算效率的技术相结合,XBART在预测和函数估计方面达到了最先进的性能。模拟研究表明,XBART提供了对平均功能的准确的点向估计,其速度比流行的替代方法,如BART、XGBoost和各种测试功能的神经网络(使用Keras)。此外,还证明,使用XASTART来启动标准的巴伊马MCMC算法大大改进了可靠的间隔范围并缩短了整个运行时间。最后,确定了三个基本理论结果:(1) 模型的单一树本具有同样的一致性,(2) 从单树本算法中获得的样品与特定的可能性和先前规格下的后方样本相对应,(3) 由高级分子算法制作的Markov链具有独特的位置分布。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
0+阅读 · 2021年2月10日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员