Diffusion magnetic resonance imaging (dMRI) enables non-invasive investigation of tissue microstructure. The Standard Model (SM) of white matter aims to disentangle dMRI signal contributions from intra- and extra-axonal water compartments. However, due to the model its high-dimensional nature, accurately estimating its parameters poses a complex problem and remains an active field of research, in which different (machine learning) strategies have been proposed. This work introduces an estimation framework based on implicit neural representations (INRs), which incorporate spatial regularization through the sinusoidal encoding of the input coordinates. The INR method is evaluated on both synthetic and in vivo datasets and compared to existing methods. Results demonstrate superior accuracy of the INR method in estimating SM parameters, particularly in low signal-to-noise conditions. Additionally, spatial upsampling of the INR can represent the underlying dataset anatomically plausibly in a continuous way. The INR is self-supervised, eliminating the need for labeled training data. It achieves fast inference, is robust to noise, supports joint estimation of SM kernel parameters and the fiber orientation distribution function with spherical harmonics orders up to at least 8, and accommodates gradient non-uniformity corrections. The combination of these properties positions INRs as a potentially important tool for analyzing and interpreting diffusion MRI data.
翻译:暂无翻译