In this paper, a finite volume approximation scheme is used to solve a non-local macroscopic material flow model in two space dimensions, accounting for the presence of boundaries in the non-local terms. Based on a previous result for the scalar case, we extend the setting to a system of heterogeneous material on bounded domains. We prove the convergence of the approximate solutions constructed using the Roe scheme with dimensiona splitting, where the major challenge lies in the treatment of the discontinuity occurring in the flux function. Numerical tests show a good agreement with microscopic simulations.
翻译:本文采用有限体积近似格式求解二维空间中的非局部宏观材料流动模型,该模型在非局部项中考虑了边界的存在。基于先前标量情形的相关结果,我们将该框架扩展至有界域上的异质材料系统。我们证明了采用Roe格式结合维数分裂构造的近似解的收敛性,其中主要挑战在于处理通量函数中出现的间断。数值测试表明,该模型与微观模拟结果吻合良好。