The rapid advancement of Artificial Intelligence (AI) has created unprecedented demands for computational power, yet methods for evaluating the performance, efficiency, and environmental impact of deployed models remain fragmented. Current approaches often fail to provide a holistic view, making it difficult to compare and optimise systems across heterogeneous hardware, software stacks, and numeric precisions. To address this gap, we propose a unified and reproducible methodology for AI model inference that integrates computational and environmental metrics under realistic serving conditions. Our framework provides a pragmatic, carbon-aware evaluation by systematically measuring latency and throughput distributions, energy consumption, and location-adjusted carbon emissions, all while maintaining matched accuracy constraints for valid comparisons. We apply this methodology to multi-precision models across diverse hardware platforms, from data-centre accelerators like the GH200 to consumer-level GPUs such as the RTX 4090, running on mainstream software stacks including PyTorch, TensorRT, and ONNX Runtime. By systematically categorising these factors, our work establishes a rigorous benchmarking framework that produces decision-ready Pareto frontiers, clarifying the trade-offs between accuracy, latency, energy, and carbon. The accompanying open-source code enables independent verification and facilitates adoption, empowering researchers and practitioners to make evidence-based decisions for sustainable AI deployment.
翻译:暂无翻译