Retraction note: After posting the manuscript on arXiv, we were informed by Erik Jan van Leeuwen that both results were known and they appeared in his thesis[vL09]. A PTAS for MDS is at Theorem 6.3.21 on page 79 and A PTAS for MCDS is at Theorem 6.3.31 on page 82. The techniques used are very similar. He noted that the idea for dealing with the connected version using a constant number of extra layers in the shifting technique not only appeared Zhang et al.[ZGWD09] but also in his 2005 paper [vL05]. Finally, van Leeuwen also informed us that the open problem that we posted has been resolved by Marx~[Mar06, Mar07] who showed that an efficient PTAS for MDS does not exist [Mar06] and under ETH, the running time of $n^{O(1/\epsilon)}$ is best possible [Mar07]. We thank Erik Jan van Leeuwen for the information and we regret that we made this mistake. Abstract before retraction: We present two (exponentially) faster PTAS's for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTAS's that find $(1+\epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph run in time $n^{O(1/\epsilon)}$. This can be compared to the best known $n^{O(1/\epsilon \log {1/\epsilon})}$-time PTAS by Nieberg and Hurink~[WAOA'05] for MDS that only uses graph structures and an $n^{O(1/\epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du~[J Glob Optim'09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional "widths" of the problems.


翻译:提醒注意 : 在将手稿张贴在 ArXiv 上之后, Erik Jan van Leeuwen 告诉我们, 这两份文件都已经为人所知, 并出现在他的论文[vL09] 中。 一个MDS的PTAS在79页的Theorem 6.21中, 一个MDS的PTAS在82页的Theorem 6.31中。 所使用的技术非常相似。 他指出, 使用移动技术中固定数量的额外层处理连接版本的想法不仅出现在张和al. [ZGWD09], 而且在他的2005年的论文[VL05]中也出现了。 最后, van Leeuwen 还告诉我们, 我们所张贴的开放问题已经通过 Marx~ [Mar06, Mar07] 显示MDS 高效的 PTAS没有存在 [Mar06], 而运行时间只有 $ónO (1/\eplon) 。 我们感谢 Erik Jan van Leeuwen 的信息和我们做了这个错误 。 在回溯 Sdeal Studal Stal State Stal1 中, 我们展示了一个快速的Settyal, 的S deal 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
44+阅读 · 2021年9月19日
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
搜索query意图识别的演进
DataFunTalk
13+阅读 · 2020年11月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
搜索query意图识别的演进
DataFunTalk
13+阅读 · 2020年11月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员