Classical approximation results for stochastic differential equations analyze the $L^p$-distance between the exact solution and its Euler-Maruyama approximations. In this article we measure the error with temporal-spatial H\"older-norms. Our motivation for this are multigrid approximations of the exact solution viewed as a function of the starting point. We establish the classical strong convergence rate $0.5$ with respect to temporal-spatial H\"older-norms if the coefficient functions have bounded derivatives of first and second order.


翻译:Stochactic 差分方程的经典近似结果分析了 $L $p$- 准确解决方案与 欧拉- 丸山近似值之间的距离。 在本条中, 我们用时间空间 H\ “ older- norms ” 测量错误。 我们这样做的动机是将精确解决方案视为起点函数的多电离近似值。 如果系数函数将第一和第二顺序的衍生物捆绑在一起, 我们就可以确定时间空间 H\ “ older- norms” 的典型强烈趋同率 0. 5美元 。

0
下载
关闭预览

相关内容

【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
21+阅读 · 2021年10月24日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
专知会员服务
100+阅读 · 2019年12月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月5日
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员