The common way to optimize auction and pricing systems is to set aside a small fraction of the traffic to run experiments. This leads to the question: how can we learn the most with the smallest amount of data? For truthful auctions, this is the \emph{sample complexity} problem. For posted price auctions, we no longer have access to samples. Instead, the algorithm is allowed to choose a price $p_t$; then for a fresh sample $v_t \sim \mathcal{D}$ we learn the sign $s_t = sign(p_t - v_t) \in \{-1,+1\}$. How many pricing queries are needed to estimate a given parameter of the underlying distribution? We give tight upper and lower bounds on the number of pricing queries required to find an approximately optimal reserve price for general, regular and MHR distributions. Interestingly, for regular distributions, the pricing query and sample complexities match. But for general and MHR distributions, we show a strict separation between them. All known results on sample complexity for revenue optimization follow from a variant of using the optimal reserve price of the empirical distribution. In the pricing query complexity setting, we show that learning the entire distribution within an error of $\epsilon$ in Levy distance requires strictly more pricing queries than to estimate the reserve. Instead, our algorithm uses a new property we identify called \emph{relative flatness} to quickly zoom into the right region of the distribution to get the optimal pricing query complexity.
翻译:优化拍卖和定价制度的常见方法是将一小部分交易量留出用于实验。 这导致一个问题 : 我们如何用最小数量的数据学习最多? 对于真实的拍卖来说, 这是一个问题 。 对于已公布的价格拍卖, 我们不再能够使用样本。 相反, 允许算法选择价格 $ p_ t ; 然后, 对于新鲜的样本 $_ t \ sim\ mathcal{D}, 我们学习美元= 符号 (p_ t - v_ t) = at $-1, +1 $ 。 对于真实的拍卖, 需要多少定价询问来估计基础分配的某个参数? 对于已公布的价格拍卖, 我们不再有严格的定价限制。 有趣的是, 对于定期分配、 定价查询和抽样复杂性匹配。 但是对于一般的和MHR的分布, 我们展示了严格的区别。 所有关于收入最复杂程度的抽样分析结果, 从最精确的定价到更精确的定价, 要求我们用最精确的定价来显示我们最精确的定价。