Feature extraction is an essential task in graph analytics. These feature vectors, called graph descriptors, are used in downstream vector-space-based graph analysis models. This idea has proved fruitful in the past, with spectral-based graph descriptors providing state-of-the-art classification accuracy. However, known algorithms to compute meaningful descriptors do not scale to large graphs since: (1) they require storing the entire graph in memory, and (2) the end-user has no control over the algorithm's runtime. In this paper, we present streaming algorithms to approximately compute three different graph descriptors capturing the essential structure of graphs. Operating on edge streams allows us to avoid storing the entire graph in memory, and controlling the sample size enables us to keep the runtime of our algorithms within desired bounds. We demonstrate the efficacy of the proposed descriptors by analyzing the approximation error and classification accuracy. Our scalable algorithms compute descriptors of graphs with millions of edges within minutes. Moreover, these descriptors yield predictive accuracy comparable to the state-of-the-art methods but can be computed using only 25% as much memory.


翻译:摘要:特征提取是图分析中的一个关键任务。这些特征向量被称为图描述符,用于下游基于向量空间的图分析模型中。过去证明,基于谱的图描述符提供了最先进的分类准确性。然而,已知的计算有意义的描述符的算法不适用于大型图形,因为它们要求在内存中存储整个图形,并且最终用户无法控制算法的运行时间。在本文中,我们提出了流式算法来近似计算涵盖图的基本结构的三种不同的图描述符。在边流上运行可以避免将整个图形存储在内存中,并且控制样本大小可以使我们将算法的运行时间保持在所需的范围内。我们通过分析逼近误差和分类准确性来展示所提出描述符的有效性。我们的可扩展算法可以在几分钟内计算数百万边的图的描述符。此外,这些描述符产生的预测准确度与最先进的方法相当,但可以使用只有其25%的内存进行计算。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员