An important question in statistical network analysis is how to estimate models of discrete and dependent network data with intractable likelihood functions, without sacrificing computational scalability and statistical guarantees. We demonstrate that scalable estimation of random graph models with dependent edges is possible, by establishing convergence rates of pseudo-likelihood-based $M$-estimators for discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. We highlight the impact of two complex phenomena on the convergence rate: phase transitions and model near-degeneracy. The main results have possible applications to discrete and dependent network, spatial, and temporal data. To showcase convergence rates, we introduce a novel class of generalized $\beta$-models with dependent edges and parameter vectors of increasing dimension, which leverage additional structure in the form of overlapping subpopulations to control dependence. We establish convergence rates of pseudo-likelihood-based $M$-estimators for generalized $\beta$-models in dense- and sparse-graph settings.
翻译:统计网络分析的一个重要问题是,如何在不牺牲计算可缩放性和统计保障的情况下,估计具有难测性功能的离散和依赖网络数据模型。我们证明,对具有依附边缘的随机图形模型进行可缩放的估计是可能的,方法是为具有指数参数化和参数矢量在单一观察情景中日益增强的离散非定向图形模型确定以伪似差值和参数矢量为基础的统一率。我们强调两种复杂现象对趋同率的影响:阶段过渡和近离异模型。主要结果有可能适用于离散和依赖网络、空间和时间数据。为了展示趋同率,我们采用了一种具有依附边缘和参数矢量日益增强的通用的美元/贝塔元模型新颖类别,该类别以重叠子群的形式利用额外结构来控制依赖性。我们为密密密和稀薄环境中的通用美元/贝塔模型建立了以伪似利值计算的计算器的趋同率。