Route choice modeling is a fundamental task in transportation planning and demand forecasting. Classical methods generally adopt the discrete choice model (DCM) framework with linear utility functions and high-level route characteristics. While several recent studies have started to explore the applicability of deep learning for route choice modeling, they are limited to path-based models with relatively simple model architectures and relying on predefined choice sets. Existing link-based models can capture the dynamic nature of link choices within the trip without the need for choice set generation, but still assume linear relationships and link-additive features. To address these issues, this study proposes a general deep inverse reinforcement learning (IRL) framework for link-based route choice modeling, which is capable of incorporating diverse features (of the state, action and trip context) and capturing complex relationships. Specifically, we adapt an adversarial IRL model to the route choice problem for efficient estimation of context-dependent reward functions without value iteration. Experiment results based on taxi GPS data from Shanghai, China validate the superior prediction performance of the proposed model over conventional DCMs and other imitation learning baselines, even for destinations unseen in the training data. Further analysis show that the model exhibits competitive computational efficiency and reasonable interpretability. The proposed methodology provides a new direction for future development of route choice models. It is general and can be adaptable to other route choice problems across different modes and networks.


翻译:路由选择模型是运输规划和需求预测的一项基本任务。古典方法通常采用具有线性通用功能和高水平路线特点的离散选择模型框架(DCM),尽管最近一些研究已开始探索选择路由选择模型的深层次学习适用性,但限于具有相对简单的模型架构和依赖预先界定的选择数据集的路径模型。现有的基于链接的模型可以在旅行中捕捉链接选择的动态性质,而不需要作出选择,但仍然承担线性关系和连接补充特征。为解决这些问题,本研究提出了基于链接的路线选择模型通用深层强化学习(IRL)框架,该框架能够纳入多种特征(州、行动和旅行背景)并捕捉复杂的关系。具体地说,我们将一个基于竞争的IRL模型适用于选择路径问题,以便有效估计基于背景的奖励功能,而无需再加码。中国上海的出租车GPS数据实验结果验证了拟议模型优于常规DCM和其他模拟学习基线的预测性业绩,即使是在培训数据中看不见的目的地。进一步分析方法可以解释其他选择模式的成本效益。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员