Magnetic Resonance Imaging (MRI) is a valuable clinical diagnostic modality for spine pathologies with excellent characterization for infection, tumor, degenerations, fractures and herniations. However in surgery, image-guided spinal procedures continue to rely on CT and fluoroscopy, as MRI slice resolutions are typically insufficient. Building upon state-of-the-art single image super-resolution, we propose a reference-based, unpaired multi-contrast texture-transfer strategy for deep learning based in-plane and across-plane MRI super-resolution. We use the scattering transform to relate the texture features of image patches to unpaired reference image patches, and additionally a loss term for multi-contrast texture. We apply our scheme in different super-resolution architectures, observing improvement in PSNR and SSIM for 4x super-resolution in most of the cases.
翻译:磁共振成像(MRI)是脊椎病症的一种有价值的临床诊断方法,对感染、肿瘤、变形、骨折和外壳具有极好的特征,但在手术中,图像引导脊椎程序继续依赖CT和氟相光检查,因为MRI切片分辨率通常不足。在最先进的单一图像超分辨率的基础上,我们提出一种基于参考的、未受保护的多调质素转移战略,用于基于机内和超平面MRI超分辨率的深层学习。我们使用散射变换将图像补丁的纹理特征与未受保护的参考图像补丁联系起来,另外对多调质质进行一个损失术语。我们在不同的超分辨率结构中应用我们的计划,在多数情况下观察以4x超级分辨率为基础的PSNR和SSIM的改进情况。